Parallel Computation Pengantar Thread dan CUDA programming

Pengantar Thread Programming

Dalam pemrograman komputer, sebuah thread adalah informasi terkait dengan penggunaan sebuah program tunggal yang dapat menangani beberapa pengguna secara bersamaan. Dari program point-of-view, sebuah thread adalah informasi yang dibutuhkan untuk melayani satu pengguna individu atau permintaan layanan tertentu. Jika beberapa pengguna menggunakan program atau permintaan bersamaan dari program lain yang sedang terjadi, thread yang dibuat dan dipelihara untuk masing-masing proses. Thread memungkinkan program untuk mengetahui user sedang masuk didalam program secara bergantian dan akan kembali masuk atas nama pengguna yang berbeda. Salah satu informasi thread disimpan dengan cara menyimpannya di daerah data khusus dan menempatkan alamat dari daerah data dalam register. Sistem operasi selalu menyimpan isi register saat program interrupted dan restores ketika memberikan program kontrol lagi.

Sebagian besar komputer hanya dapat mengeksekusi satu instruksi program pada satu waktu, tetapi karena mereka beroperasi begitu cepat, mereka muncul untuk menjalankan berbagai program dan melayani banyak pengguna secara bersamaan. Sistem operasi komputer memberikan setiap program “giliran” pada prosesnya, maka itu memerlukan untuk menunggu sementara program lain mendapat giliran. Masing-masing program dipandang oleh sistem operasi sebagai suatu tugas dimana sumber daya tertentu diidentifikasi dan terus berlangsung. Sistem operasi mengelola setiap program aplikasi dalam sistem PC (spreadsheet, pengolah kata, browser Web) sebagai tugas terpisah dan memungkinkan melihat dan mengontrol item pada daftar tugas. Jika program memulai permintaan I / O, seperti membaca file atau menulis ke printer, itu menciptakan thread. Data disimpan sebagai bagian dari thread yang memungkinkan program yang akan masuk kembali di tempat yang tepat pada saat operasi I / O selesai. Sementara itu, penggunaan bersamaan dari program diselenggarakan pada thread lainnya. Sebagian besar sistem operasi saat ini menyediakan dukungan untuk kedua multitasking dan multithreading. Mereka juga memungkinkan multithreading dalam proses program agar sistem tersebut disimpan dan  menciptakan proses baru untuk setiap thread.

Static Threading

Teknik ini biasa digunakan untuk komputer dengan chip multiprocessors dan jenis komputer shared-memory lainnya. Teknik ini memungkinkan thread berbagi memori yang tersedia, menggunakan program counter dan mengeksekusi program secara independen. Sistem operasi menempatkan satu thread pada prosesor dan menukarnya dengan thread lain yang hendak menggunakan prosesor itu.

Mekanisme ini terhitung lambat, karenanya disebut dengan static. Selain itu teknik ini tidak mudah diterapkan dan rentan kesalahan. Alasannya, pembagian pekerjaan yang dinamis di antara thread-thread menyebabkan load balancing-nya cukup rumit. Untuk memudahkannya programmer harus menggunakan protocol komunikasi yang kompleks untuk menerapkan scheduler load balancing. Kondisi ini mendorong pemunculan concurrency platforms yang menyediakan layer untuk mengkoordinasi, menjadwalkan, dan mengelola sumberdaya komputasi paralel.

Sebagian platform dibangun sebagai runtime libraries atau sebuah bahasa pemrograman paralel lengkap dengan compiler dan pendukung runtime-nya.

Dynamic Multithreading

Teknik ini merupakan pengembangan dari teknik sebelumnya yang bertujuan untuk kemudahan karena dengannya programmer tidak harus pusing dengan protokol komunikasi, load balancing, dan kerumitan lain yang ada pada static threading. Concurrency platform ini menyediakan scheduler yang melakukan load balacing secara otomatis. Walaupun platformnya masih dalam pengembangan namun secara umum mendukung dua fitur : nested parallelism dan parallel loops. Nested parallelism memungkinkan sebuah subroutine di-spawned (ditelurkan dalam jumlah banyak seperti telur katak) sehingga program utama tetap berjalan sementara subroutine menghitung hasilnya. Sedangkan parallel loops seperti halnya fungsi for namun memungkinkan iterasi loop dilakukan secara bersamaan.

Pengantar Message Passing, OpenMP

Massage Passing merupkan suatu teknik bagaimana mengatur suatu alur komunikasi messaging terhadap proses pada system. Message passing dalam ilmu komputer adalah suatu bentuk komunikasi yang digunakan dalam komputasi paralel , pemrograman-berorientasi objek , dan komunikasi interprocess . Dalam model ini, proses atau benda dapat mengirim dan menerima pesan yang terdiri dari nol atau lebih byte, struktur data yang kompleks, atau bahkan segmen kode ke proses lainnya dan dapat melakukan sinkronisasi. Objek didistribusikan dan metode sistem remote doa seperti ONC RPC , CORBA , Java RMI , DCOM , SOAP , . NET Remoting , CTO , QNX Neutrino RTOS , OpenBinder , D-Bus , Unison RTOS dan serupa pesan lewat sistem.Paradigma Message passing yaitu :

  1. Banyak contoh dari paradigma sekuensial dipertimbangkan bersama-sama.
  2. Programmer membayangkan beberapa prosesor, masing-masing dengan memori, dan menulis sebuah program untuk berjalan pada setiap prosesor.
  3. Proses berkomunikasi dengan mengirimkan pesan satu sama lain

OpenMP merupakan API yang mendukung multi-platform berbagi memori multiprocessing pemrograman C , C + + , dan Fortran , pada kebanyakan arsitektur prosesor dan system operasi , termasuk Solaris , AIX , HP-UX , GNU / Linux , Mac OS X , dan Windows platform. Ini terdiri dari satu set perintah kompiler, rutinitas library, dan variable lingkungan yang mempengaruhi perilaku run-time. OpenMP dikelola oleh nirlaba teknologi konsorsium OpenMP Arsitektur Review Board (ARB atau OpenMP), bersama-sama didefinisikan oleh sekelompok perangkat keras komputer utama dan vendor perangkat lunak, termasuk AMD , IBM , Intel , Cray , HP , Fujitsu , Nvidia , NEC , Microsoft , Texas Instruments , Oracle Corporation , dan banyak lagi.

 

Pengantar Programming CUDA

GPU (Graphical Processing Unit) pada awalnya adalah sebuah prosesor yang berfungsi khusus untuk melakukan rendering pada kartu grafik saja, tetapi seiring dengan semakin meningkatnya kebutuhan rendering, terutama untuk mendekati waktu proses yang realtime /sebagaimana kenyataan sesungguhnya, maka meningkat pula kemampuan prosesor grafik tersebut. akselerasi peningkatan teknologi GPU ini lebih cepat daripada peningkatan teknologi prosesor sesungguhnya (CPU), dan pada akhirnya GPU menjadi General Purpose, yang artinya tidak lagi hanya untuk melakukan rendering saja melainkan bisa untuk proses komputasi secara umum.penggunaan Multi GPU dapat mempercepat waktu proses dalam mengeksekusi program karena arsitekturnya yang natively parallel. Selain itu Peningkatan performa yang terjadi tidak hanya berdasarkan kecepatan hardware GPU saja, tetapi faktor yang lebih penting adalah cara membuat kode program yang benarbenar bisa efektif berjalan pada Multi GPU.

 

CUDA merupakan teknologi anyar dari produsen kartu grafis Nvidia, dan mungkin belum banyak digunakan orang secara umum. Kartu grafis lebih banyak digunakan untuk menjalankan aplikasi game, namun dengan teknologi CUDA ini kartu grafis dapat digunakan lebih optimal ketika menjalankan sebuah software aplikasi. Fungsi kartu grafis Nvidia digunakan untuk membantu Processor (CPU) dalam melakukan kalkulasi dalam proses data.

 

CUDA merupakan singkatan dari Compute Unified Device Architecture, didefinisikan sebagai sebuah arsitektur komputer parallel, dikembangkan oleh Nvidia. Teknologi ini dapat digunakan untuk menjalankan proses pengolahan gambar, video, rendering 3D, dan lain sebagainya.

 

Singkatnya, CUDA dapat memberikan proses dengan pendekatan bahasa C, sehingga programmer atau pengembang software dapat lebih cepat menyelesaikan perhitungan yang komplek. Bukan hanya aplikasi seperti teknologi ilmu pengetahuan yang spesifik. CUDA sekarang bisa dimanfaatkan untuk aplikasi multimedia. Misalnya meng-edit film dan melakukan filter gambar. Sebagai contoh dengan aplikasi multimedia, sudah mengunakan teknologi CUDA. Software TMPGenc 4.0 misalnya membuat aplikasi editing dengan mengambil sebagian proces dari GPU dan CPU. VGA yang dapat memanfaatkan CUDA hanya versi 8000 atau lebih tinggi.

 

Keuntungan dengan CUDA sebenarnya tidak luput dari teknologi aplikasi yang ada. CUDA akan mempercepat proses aplikasi tertentu, tetapi tidak semua aplikasi yang ada akan lebih cepat walaupun sudah mengunakan fitur CUDA. Hal ini tergantung seberapa cepat procesor yang digunakan, dan seberapa kuat sebuah GPU yang dipakai. Dan bagian terpenting adalah aplikasi apa yang memang memanfaatkan penuh kemampuan GPU dengan teknologi CUDA. Kedepan seperti pengembang software Adobe akan ikut memanfaatkan fitur CUDA pada aplikasi mereka.Jawaban akhir adalah, untuk memanfaatkan CUDA kembali melihat aplikasi software yang ada. Apakah software yang ada memang mampu memanfaatkan CUDA dengan proses melalui GPU secara penuh. Hal tersebut akan berguna untuk mempercepat selesainya proses pada sebuah aplikasi. Dengan kecepatan proses GPU, aplikasi akan jauh lebih cepat. Khususnya teknologi ilmu pengetahuan dengan ramalan cuaca, simulator pertambangan atau perhitungan yang rumit dibidang keuangan. Sedangkan aplikasi umum sepertinya masih harus menunggu.

 

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s